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Stripe nonuniformity is very typical in line infrared focal plane (IRFPA) and uncooled starring IRFPA.
We develop the minimum mean square error (MMSE) method for stripe nonuniformity correction (NUC).
The goal of the MMSE method is to determine the optimal NUC parameters for making the corrected
image the closest to the ideal image. Moreover, this method can be achieved in one frame, making it more
competitive than other scene-based NUC algorithms. We also demonstrate the calibration results of our
algorithm using real and virtual infrared image sequences. The experiments verify the positive effect of
our algorithm.
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Stripe nonuniformity is a special kind of nonuniformity
very popular in line infrared focal plane (IRFPA) and
uncooled staring IRFPA. The most common nonunifor-
mity is pixel nonuniformity, which supposes that dif-
ferent pixels have different nonuniformity parameters.
Stripe nonuniformity is defined as all pixels in one stripe
having the same nonuniformity parameters and different
stripes having different nonuniformity parameters. These
differences decide which stripe nonuniformity correction
(NUC) should be considered as a special case[1,2].

NUC techniques have been developed and implemented
to perform the necessary calibration for all infrared (IR)
imaging applications. These correction techniques can be
divided into two primary categories: 1) reference-based
correction using calibrated images on startup, and 2)
scene-based techniques that continually recalibrate the
sensor for parameter drifts[3,4].

The most popular reference-based correction meth-
ods are the so-called one-point correction method
and two-point correction method. The drawbacks of
reference-based methods have been well-documented in
literature[5]. Hence, researchers have turned to scene-
based NUC algorithms. Scribner et al. discussed
least mean square (LMS)-based nonuniformity correc-
tion algorithm[3], but it blurred the image. Harris et al.
introduced the constant-statistics (CS) constraint NUC
algorithm[6]. However, their method required numerous
image sequences for parameter estimation. Moreover,
their algorithm produced ghosting artifacts which blurred
the image.

In addition to scene-based NUC algorithms, destrip-
ing algorithms are often used in stripe NUC. The sim-
plest destriping algorithm processes image data with a
low-pass filter using discrete Fourier transform[7]. The
method is simple, but it often does not remove all stripes
and leads to significant blurring within the image. Some
researchers have removed the stripes using wavelet anal-
ysis, which takes advantage of scaling and directional
properties to detect and eliminate striping patterns[8].
Chen et al. proposed a power filtering method to distin-
guish striping-induced frequency components using the
power spectrum, and then removed the stripes using a

power finite-impulse response filter[9]. Moreover, some
destriping algorithms examine the distribution of digi-
tal numbers for each sensor, and adjust this distribution
to some reference distribution, such as histogram match-
ing and moment matching[9,10]. The common problem of
these destriping algorithms is that they do not regard the
stripe as the nonuniformity. Hence, they only eliminate
the offset of the stripe nonuniformity and not the gain.
Therefore, these algorithms are not suitable for the stripe
NUC.

The purpose of this study is to solve the stripe nonuni-
formity problem. In this letter, we develop the minimum
mean square error (MMSE) method for stripe NUC. The
goal of the MMSE method is to determine the optimal
NUC parameters that make the corrected image the clos-
est to the ideal image. However, because the effects of
the destriping algorithms are not satisfactory, we com-
pare our algorithm with the scene-based NUC algorithm.

The goal of our stripe NUC algorithm is to deter-
mine the optimal correction parameters which can min-
imize the difference between original image (image with
nonuniformity) and ideal image (image without nonuni-
formity). We call this algorithm the MMSE NUC algo-
rithm. In this letter, the mean square error (MSE) is
constructed as

MSEi,j = E
{

[di,j(n) − yi,j(n)]
2
}

= E
{

[di,j(n) − Gjxi,j(n) − Oj ]
2
}

, (1)

where yi,j(n) is the input observation data at pixel (i, j)
in the frame n, xi,j(n) is the real scene data without
nonuniformity, Gj is the stripe nonuniformity gain pa-
rameter at column j, and Oj is the stripe nonuniformity
offset parameter at column j, MSEi,j is the MSE at time
domain of the pixel (i, j), E is the temporal mean till
frame n, and di,j(n) is the ideal image at frame n. The
image column number is M and the image row number
is N . Minimizing MSE, we have ∂MSEi,j/∂Gj = 0 and
∂MSEi,j/∂Oj = 0. Set

Wj =

[

Gj

Oj

]

, Xi,j(n) =

[

xi,j(n)

1

]

. (2)
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Hence, minimizing MSE means ∂MSEi,j/∂Wj = 0. De-
fine

MSEj =

[

∑

i

MSEi,j

]

/

N

=

[

∑

i

E
{

[

di,j(n) − WT
j · Xi,j(n)

]2
}

]/

N

= E

{

∑

i

{

[

di,j(n) − WT
j · Xi,j(n)

]2
}

/

N

}

, (3)

define

MSE′

j =
∑

i

{

[

di,j(n) − WT
j · Xi,j(n)

]2
}/

N. (4)

Similarly, minimizing MSE means ∂MSEj/∂Wj =0.
According to ∂MSEj/∂Wj = 0, the NUC parameter Wj

can be calculated. Next, we analyze whether we can
use only one frame to obtain Wj and ignore the tem-
poral mean E. Usually, sufficiently large frames cause
MSEi,j to converge. Moreover, sufficiently large frames
and a large N cause MSEj to converge. In fact, if N
is large enough, one frame can cause MSEj to converge.
On the other hand, if N is large enough, the value of
the MSEj will not change through temporal mean, and
MSE′

j =MSEj .
The optimal Wj can be obtained according to

∂MSE′

j/∂Wj = 0.

W optimal
j = R−1

j Pj , (5)

and

Rj =

N
∑

i=1

[

Xi,j(n) · Xi,j(n)T
]/

N, (6)

Pj =
N

∑

i=1

[

di,j(n) · Xi,j(n)
]/

N. (7)

To obtain the optimal solution in the stripe NUC, the
desired signal di,j(n) should be defined as

di,j(n) =

{

WT
j−1 · Xi,j−1(n) j > 2

xi,1(n) j = 2
. (8)

The core idea of the MMSE method is that the real
scene in neighbor columns have high relativity, while the
stripe nonuniformity in neighbor columns do not have rel-
ativity. The MMSE method can restrain the irrelevant
signal and resume the relative signal. WT

j−1 ·Xi,j−1(n) is
the nonuniformity corrected data in column j − 1. The
real scene in neighbor columns (j − 1 and j) have high
relativity. If the nonuniformity corrected data in column
j−1 is taken as the desired signal di,j(n), we can resume
the relative real scene signal in column j. This is the rea-
son that Eq. (8) is defined as the desired signal di,j(n).

Our MMSE is an iterative method. The first column
is set as the initial data. The second column stripe
nonuniformity parameter W2 is obtained through set-
ting di,2(n) = xi,1(n). The third column stripe nonuni-
formity parameter W3 is obtained by setting di,3(n) =
WT

2 · Xi,2(n), and so forth. Hence, we can calculate all
the stripe nonuniformity parameters W optimal.

The edge area will destroy the high relativity of the
neighbor columns. Hence, the MMSE only works on the
non-edge area. Using the structure tensor edge-detection
method, we can divide the image into an edge and a non-
edge area[4], defined as

Ti,j(n) =

{

0 (i, j) is edge
1 else

. (9)

R′

j and P ′

j are changed to

R′

j =

N
∑

i=1

Ti,j(n)
[

Xi,j(n) · Xi,j(n)T
]

/ N
∑

i=1

Ti,j(n), (10)

P ′

j =

N
∑

i=1

Ti,j(n) [di,j(n) · Xi,j(n)]

/ N
∑

i=1

Ti,j(n). (11)

The final correction is

yi,j(n) = W optimal′

j · Xi,j(n), (12)

and

W optimal′

j = R′−1
j · P ′

j . (13)

To test the processing effect, we use real image se-
quences S1={I1

1 , I1
2 , . . ., I1

k , . . ., I1
500} acquired at the

rate of 50 Hz by 320 × 240 (pixels) long-wavelength un-
cooled IRFPA to verify our algorithm.

Qian et al. presented a scene-based NUC algorithm
comprising a space low-pass and a temporal high-pass
(SLTH) NUC algorithm[2]. This algorithm is improved
from the CS constraint NUC algorithm and can decrease
the standard deviation of the input observation data. Ac-
cording to the central limit theorem, the decrease in stan-
dard deviation of the observation data will enhance the
convergence effect. Hence, the SLTH NUC algorithm has
a significant improvement over the CS constaint algo-
rithm. In fact, the SLTH NUC algorithm can effectively
eliminate stripe nonuniformity.

The comparison of the two algorithms is shown in
Fig. 1 (the 1st frame, 5th frame, and 40th frame). Fig-
ure 1 shows that both the SLTH and MMSE can elimi-
nate stripe nonuniformity. However, the SLTH can fully
eliminate stripe uniformity after the 40th frame, whereas
the MMSE can achieve stripe NUC in one frame.

Fig. 1. Comparison of the two algorithms. (a) Original image
(1st frame), (b) original image (5th frame), (c) original image
(40th frame), (d) SLTH (1st frame), (e) SLTH (5th frame),
(f) SLTH (40th frame), (g) MMSE (1st frame), (h) MMSE
(5th frame), and (i) SLTH (40th frame).
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Fig. 2. Comparison of the two algorithms on the virtual
nonuniformity (40th frame). (a) Original image without
nonuniformity, (b) original image with added virtual nonuni-
formity, (c) SLTH processed image, and (d) MMSE processed
image.

Fig. 3. Comparison of the two algorithms MSE.

We used a real image sequence S2={I2
1 , I2

2 , . . ., I2
k ,

. . ., I2
100} to analyze our algorithm. The image sequence

we used is ground-scene images without nonuniformity.
Stripe nonuniformity was added to these images. The
stripe nonuniformity gain obeys Gaussian distribution
with the mean equal to 1 and the standard deviation
equal to 0.01. The stripe nonuniformity offset also obeys
Gaussian distribution with the mean equal to 0 and the
standard deviation equal to 3.

We used MSE at space domain to compare the conver-
gence speed of two algorithms, defined as

MSE =

N
∑

i=1

M
∑

j=1

(I − P )2

M × N
, (14)

where I is the original image without nonuniformity (the
ideal image), P is the NUC processed image. Figure 2
shows the processing results of the two algorithms in the
40th frame of S2. Figure 3 indicates the MSE of the two
algorithms.

When there is lesser MSE, the NUC effect is much
better. After 40 frames, the SLTH algorithm begins to
converge, whereas the MMSE algorithm requires only
one frame to converge. The MSE value of the MMSE
algorithm is similar to that of the SLTH algorithm. The
same MSE means the same stripe NUC effect. Our algo-
rithm’s best advantage is that one frame processing can
achieve good stripe NUC effect.

In conclusion, a useful stripe NUC algorithm using
MMSE is proposed. The experimental results show that
our stripe NUC can eliminate stripe nonuniformity ef-
fectively. Furthermore, our method can obtain optimal
NUC coefficients directly from the correlation matrix,
thus, it only requires one frame. Moreover, our algorithm
has no convergence problem while other scene-based al-
gorithms have. Therefore, this proposed algorithm is
much more effective.
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